测绘学报 ›› 2024, Vol. 53 ›› Issue (11): 2053-2063.doi: 10.11947/j. AGCS.2024.20240109.

• 地图学与地理信息 • 上一篇    

面向地学分析AI建模的地理信息服务层次网络模型

吴华意1,2(), 赵安琪1, 梁健源1(), 侯树洋1   

  1. 1.武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430072
    2.地球空间信息技术协同创新中心,湖北 武汉 430079
  • 收稿日期:2024-03-19 发布日期:2024-12-13
  • 通讯作者: 梁健源 E-mail:wuhuayi@whu.edu.cn;jliang@whu.edu.cn
  • 作者简介:吴华意(1966—),男,教授,研究方向为地理信息服务、分析和挖掘。 E-mail:wuhuayi@whu.edu.cn
  • 基金资助:
    国家自然科学基金(41930107)

Five-layer hierarchical network (5-HiNet) of geospatial information service for AIGC of geographic analysis model

Huayi WU1,2(), Anqi ZHAO1, Jianyuan LIANG1(), Shuyang HOU1   

  1. 1.State Key Laboratory of Information Engineering in Survey, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
    2.Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China
  • Received:2024-03-19 Published:2024-12-13
  • Contact: Jianyuan LIANG E-mail:wuhuayi@whu.edu.cn;jliang@whu.edu.cn
  • About author:WU Huayi (1966—), male, professor, majors in geographic information service, analysis and mining. E-mail: wuhuayi@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41930107)

摘要:

在人工智能生成(AIGC)和大语言模型(LLM)的大背景下,如何提升地学分析模型构建的智能化水平已成为业界广泛关注的焦点。为此,本文提出地理信息服务层次网络模型5-HiNet,基于需求描述、抽象模型、功能模块、服务接口、函数实例的5层子网络结构对海量地学分析模型进行建模,由抽象到具体逐层描述地学分析模型的实现过程,固化模型中的知识,形成面向地学分析模型的完备知识体系。5-HiNet模型能够进一步与大语言模型(LLM)进行耦合,实现地学分析模型的智能化生成。本文通过原型系统和应用案例,初步验证了5-HiNet的可行性,并为未来研究和应用提供新的方向和思路。

关键词: 地理信息服务, 地学分析模型, 层次网络, 领域知识, 智能化生成

Abstract:

Within the context of artificial intelligence generation (AIGC) and large language model (LLM), improving the intelligence level of generating geographic analysis models has gained widespread attention in the field. This paper proposes a geospatial information service hierarchical network model, named 5-HiNet. This model allows for a step-by-step description of heterogeneous geographic analysis models based on the five-layer hierarchical sub-network structure of demand description, abstract model, functional module, service interface, and functional instance, which depicts the realization process of geographic analysis models from the general to the specific. Within the five-layer hierarchical sub-network structure, the 5-HiNet can integrate massive expert knowledge embedded in the geographic analysis models and thus form a well-rounded domain knowledge system. Furthermore, the 5-HiNet can be coupled with the LLM to generate geographic analysis models automatically. A prototype system with a case study is developed in this paper to demonstrate the feasibility of the proposed 5-HiNet, and several research directions and insights for future study are provided.

Key words: geospatial information service, geographic analysis model, hierarchical network, domain knowledge, intelligent generation

中图分类号: