[1] |
HE Yuanqing, CHEN Min, WEN Yongning, et al. A web-based strategy to reuse grids in geographic modeling[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116: 103170.
|
[2] |
LI Zhenlong, YANG Chaowei, HUANG Qunying, et al. Building model as a service to support geosciences[J]. Computers, Environment and Urban Systems, 2017, 61: 141-152.
|
[3] |
DONG Guangsheng, LI Rui, WU Huayi, et al. Learning the spatial co-occurrence for browsing interests extraction of domain users on public map service platforms[J]. Geo-spatial Information Science, 2024, 27(2): 455-474.
|
[4] |
游兰. 云环境下空间信息服务组合的自治愈关键技术研究[D]. 武汉: 武汉大学, 2015.
|
|
YOU Lan. Research on key technologies of self-healing of spatial information service composition in cloud environment[D]. Wuhan: Wuhan University, 2015.
|
[5] |
JIN Fengying, LI Rui, LIANG Jianyuan, et al. An augmented geospatial service web based on QoS constraints and geospatial service semantic relationships[J]. ISPRS International Journal of Geo-Information, 2022, 11(7): 357.
|
[6] |
吴华意, 靳凤营, 梁健源, 等. 地理信息服务网络与协同研究进展[J]. 测绘学报, 2022, 51(6): 1050-1061. DOI:.
doi: 10.11947/j.AGCS.2022.20210338
|
|
WU Huayi, JIN Fengying, LIANG Jianyuan, et al. Research progress on geospatial service web and gollaboration[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1050-1061. DOI:.
doi: 10.11947/j.AGCS.2022.20210338
|
[7] |
谭振宇, 乐鹏, 张明达, 等. GeoQoS—QoS感知的空间信息服务组合建模工具[J]. 测绘通报, 2016(4): 43-48.
|
|
TAN Zhenyu, LE Peng, ZHANG Mingda, et al. GeoQoS—a tool for QoS-aware geospatial information services composition[J]. Bulletin of Surveying and Mapping, 2016(4): 43-48.
|
[8] |
邢华桥. 面向地表覆盖变化检测的服务关系模型与方法研究[J]. 测绘学报, 2018, 47(9): 1291. DOI:.
doi: 10.11947/j.AGCS.2018.20170523
|
|
XING Huaqiao. Modeling and methods of service relation for land cover change detection[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1291. DOI:.
doi: 10.11947/j.AGCS.2018.20170523
|
[9] |
GORELICK N, HANCHER M, DIXON M, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27.
|
[10] |
SHAO Zhenfeng, CHENG Tao, FU Huyan, et al. Emerging issues in mapping urban impervious surfaces using high-resolution remote sensing images[J]. Remote Sensing, 2023, 15(10): 2562.
|
[11] |
ZHANG Xianyuan, XIANG Longgang, YUE Peng, et. al. Opengeospatial engine: a cloud-based spatiotemporal computing platform[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2024(10): 453-459.
|
[12] |
CHEN Min, VOINOV A, AMES D P, et al. Position paper: open web-distributed integrated geographic modelling and simulation to enable broader participation and applications[J]. Earth-Science Reviews, 2020, 207: 103223.
|
[13] |
GAO Fan, YUE Peng, CAO Zhipeng, et al. A multi-source spatio-temporal data cube for large-scale geospatial analysis[J]. International Journal of Geographical Information Science, 2022, 36(9): 1853-1884.
|
[14] |
LIANG Jianyuan, JIN Fengying, ZHANG Xianyuan, et al. WS4GEE: enhancing geospatial web services and geoprocessing workflows by integrating the Google Earth Engine[J]. Environmental Modelling & Software, 2023, 161: 105636.
|
[15] |
XING Huaqiao, LIU Chang, LI Rui, et al. Domain constraints-driven automatic service composition for online land cover geoprocessing[J]. ISPRS International Journal of Geo-Information, 2022, 11(12): 629.
|
[16] |
HE Sheng, TAN Xicheng, ZHONG Yanfei, et al. Evolutionary PSO-based emergency monitoring geospatial edge service chain in the emergency communication network[J]. International Journal of Digital Earth, 2023, 16(1): 2797-2817.
|
[17] |
刘波. 云制造环境中面向多任务的服务组合与优化技术研究[D]. 重庆: 重庆大学, 2012.
|
|
LIU Bo. Research on multi-task oriented service composition and optimization technology in cloud manufacturing environment[D]. Chongqing: Chongqing University, 2012.
|
[18] |
张严凯. 基于蚁群算法的云制造服务组合优化研究[D]. 南京: 南京邮电大学, 2018.
|
|
ZHANG Yankai. Research on optimization of cloud manufacturing service composition based on ant colony algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018.
|
[19] |
张康, 高洪皓, 朱永华, 等. 一种基于改进模拟退火算法的QoS动态服务组合方法[J]. 应用科学学报, 2017, 35(5): 570-584.
|
|
ZHANG Kang, GAO Honghao, ZHU Yonghua, et al. QoS dynamic web services composition method based on improved simulated annealing algorithm[J]. Journal of Applied Sciences, 2017, 35(5): 570-584.
|
[20] |
GONG Jianya, WU Huayi, ZHANG Tong, et al. Geospatial Service Web: towards integrated cyberinfrastructure for GIScience[J]. Geo-spatial Information Science, 2012, 15(2): 73-84.
|
[21] |
龚健雅, 耿晶, 吴华意, 等. 地理信息资源网络服务技术及其发展[J]. 测绘科学技术学报, 2013, 30(4): 353-360.
|
|
GONG Jianya, GENG Jing, WU Huayi, et al. The technology on geospatial service web and its development[J]. Journal of Geomatics Science and Technology, 2013, 30(4): 353-360.
|
[22] |
靳凤营. 基于地理信息服务网络的服务表征与智能推荐方法研究[D]. 武汉: 武汉大学, 2023.
|
|
JIN Fengying. Research on service representation and intelligent recommendation method based on geographic information service network[D]. Wuhan: Wuhan University, 2023.
|
[23] |
TAN Xicheng, DI Liping, DENG Meixia, et al. Cloud- and agent-based geospatial service chain: a case study of submerged crops analysis during flooding of the Yangtze River basin[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1359-1370.
|
[24] |
凌朝阳, 李锐, 吴华意, 等. 语义驱动的地理实体关联网络构建与知识服务[J]. 测绘学报, 2023, 52(3): 478-489. DOI:.
doi: 10.11947/j.AGCS.2023.20210349
|
|
LING Zhaoyang, LI Rui, WU Huayi, et al. Semantic-driven construction of geographic entity association network and knowledge service[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 478-489. DOI:.
doi: 10.11947/j.AGCS.2023.20210349
|
[25] |
王晓磊. 地理空间信息Web服务子片段排序与推荐[D]. 北京: 中国地质大学(北京), 2016.
|
|
WANG Xiaolei. Ranking and recommendation of sub-segments of geospatial information Web services[D]. Beijing: China University of Geosciences (Beijing), 2016.
|
[26] |
HU Boran, ZHOU Zhangbing, CHENG Zehui. Web services recommendation leveraging semantic similarity computing[J]. Procedia Computer Science, 2018, 129: 35-44.
|
[27] |
YUE Peng, GUO Xia, ZHANG Mingda, et al. Linked Data and SDI: the case on Web geoprocessing workflows[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 245-257.
|
[28] |
VILCHES-BLÁZQUEZ L M, SAAVEDRA J. A framework for connecting two interoperability universes: OGC web feature services and linked data[J]. Transactions in GIS, 2019, 23(1): 22-47.
|
[29] |
JIN Fengying, LI Rui, WU Huayi. Graph neural network-based similarity relationship construction model for geospatial services[J]. Geo-spatial Information Science, 2024, 27(5): 1509-1523.
|
[30] |
CAO Yihan, LI Siyu, LIU Yixin, et al. A comprehensive survey of AI-generated content (AIGC): a history of generative AI from GAN to ChatGPT[EB/OL]. [2024-03-19]. http://arxiv.org/abs/2303.04226.
|
[31] |
RAY P P. ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope[J]. Internet of Things and Cyber-Physical Systems, 2023, 3: 121-154.
|
[32] |
LUO Haoran, E H, TANG Zichen, et al. ChatKBQA: a generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models[EB/OL]. [2024-03-19]. http://arxiv.org/abs/2310.08975.
|
[33] |
PAN Shirui, LUO Linhao, WANG Yufei, et al. Unifying large language models and knowledge graphs: a roadmap[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3580-3599.
|
[34] |
LI Zhenlong, NING Huan. Autonomous GIS: the next-generation AI-powered GIS[J]. International Journal of Digital Earth, 2023, 16(2): 4668-4686.
|
[35] |
杨必胜, 陈一平, 邹勤. 从大模型看测绘时空信息智能处理的机遇和挑战[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1756-1768.
|
|
YANG Bisheng, CHEN Yiping, ZOU Qin. Opportunities and challenges of spatiotemporal information intelligent processing of surveying and mapping in the era of large models[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1756-1768.
|
[36] |
MA Ning, LIU Yijun. SuperedgeRank algorithm and its application in identifying opinion leader of online public opinion supernetwork[J]. Expert Systems with Applications, 2014, 41(4): 1357-1368.
|
[37] |
席运江, 杨茜, 廖晓. 超网络与知识超网络研究简述[J]. 现代管理, 2019(4): 557-565.
|
|
XI Yunjiang, YANG Qian, LIAO Xiao. Research review on super-network and knowledge super-network[J]. Modern Management, 2019(4): 557-565.
|
[38] |
CHEN Xiang, ZHANG Ningyu, XIE Xin, et al. KnowPrompt: knowledge-aware prompt-tuning with synergistic optimization for relation extraction[C]//Proceedings of the ACM Web Conference 2022. Lyon: ACM Press, 2022: 2778-2788.
|
[39] |
LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensiveNLP tasks[J]. Advances in Neural Information Processing Systems, 2020, 33: 9459-9474.
|
[40] |
WEI J, WANG Xuezhi, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[J]. Advances in Neural Information Processing Systems, 2022, 35: 24824-24837.
|
[41] |
SAHOO P, SINGH A K, SAHA S, et al. A systematic survey of prompt engineering in large language models: techniques and applications[EB/OL]. [2024-03-19]. http://arxiv.org/abs/2402.07927.
|
[42] |
ZHANG Shengyu, DONG Linfeng, LI Xiaoya, et al. Instruction tuning for large language models: a survey[EB/OL]. [2024-03-19]. http://arxiv.org/abs/2308.10792.
|
[43] |
XU Lingling, XIE Haoran, QIN S Z J, et al. Parameter-efficient fine-tuning methods for pretrained language models: a critical review and assessment[EB/OL]. [2024-03-19]. http://arxiv.org/abs/2312.12148.
|
[44] |
NAVEED H, KHAN A U, QIU Shi, et al. A comprehensive overview of large language models[EB/OL]. [2024-03-19]. http://arxiv.org/abs/2307.06435.
|
[45] |
TANG Jiabin, YANG Yuhao, WEI Wei, et al. GraphGPT: graph instruction tuning for large language models[EB/OL]. [2024-03-19]. http://arxiv.org/abs/2310.13023.
|
[46] |
CHENG Tao, ZHANG Yang, HAWORTH J. Network SpaceTime AI: concepts, methods and applications[J]. Journal of Geodesy & Geoinformation Science, 2022, 5(3): 78-92.
|
[47] |
ZHANG Ziwei, LI Haoyang, ZHANG Zeyang, et al. Graph meets LLMs: towards large graph models[EB/OL]. [2024-03-19]. http://arxiv.org/abs/2308.14522.
|